Acid Base Chemistry Notes

1. \qquad is the Father of the Arrhenius Theory of Acids and Bases, a Nobel Prize Winner, and a Swedish Chemist Extraordinaire
2. ACIDS are aqueous solutions containing \qquad
3. BASES are aqueous solutions containing \qquad
4. All the acids we need to know are listed in \qquad
Acetic acid (last on the list) is also called \qquad at home.
5. Acids are strong because they \qquad well

For example: when HCl goes into water practically all of it turns into \qquad $+$ \qquad . Hardly any $\mathrm{HCl}_{(\mathrm{AQ})}$ remains
6. The more \qquad ions in solution, the \qquad the acid
7. Further down, especially acetic acid (vinegar) the acids do NOT \qquad well.
8. Further down, especially acetic acid (vinegar) these acids \qquad

	Acid goes into water	Dissociates this way*
$\begin{gathered} 9 \\ \sim 100 \% \end{gathered}$	$\mathrm{HCl}_{(\mathrm{G})} \stackrel{\text { water }}{\rightleftarrows}$	
~100\%	$\mathrm{HNO}_{2(\mathrm{G})} \stackrel{\text { water }}{\rightleftarrows}$	
$\begin{gathered} 11 \\ \sim 45 \% \end{gathered}$	$\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{G})} \stackrel{\text { water }}{\rightleftarrows}$	
$\begin{gathered} 12 \\ \sim 10 \% \end{gathered}$	$\mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{G})} \stackrel{\text { water }}{\rightleftarrows}$	
$\begin{gathered} 14 \\ \sim 5 \% \end{gathered}$	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{~S})} \stackrel{\text { water }}{\rightleftarrows}$	

BASES
15. All of the bases we need to know about are listed in \qquad ALL ionic compounds that are aqueous and contain hydroxides are bases. Examples include: \qquad
16. One base is "special" because it does not have \qquad ions in solution. It is \qquad
17. Bases have more \qquad than \qquad ions in solution.
18. The more \qquad the \qquad the base.

The stronger bases will \qquad into \qquad $+$ \qquad readily.

19, \qquad does not follow the Arrhenius theory for bases. It is a \qquad base.
20. Strong acids and strong bases have \qquad in solution.

Strong acids and strong bases are \qquad
\qquad because they have so many ions in solution.
21. All acids and bases are \qquad because they contain loose \qquad in solution. The more ions in solution, the better they will conduct electricity.
22. Their relative electrolytic strength is easy, their strength is listed on Table K and L \qquad to \qquad

Arrhenius theory states that aqueous solutions with excess hydrogen ions are acids, and that aqueous solutions with excess hydroxide ions are bases. It goes on to say...
23.
24. Salts are
25. This type of reaction is called:
26. The formula for water is
27. It can also be written this way
which will make balancing these reactions much easier.
28. Let's balance the "classic" acid base neutralization reaction. Hydrochloric acid and sodium hydroxide...
\qquad

Underline the ACID H^{+1} ion and underline the $\mathrm{BASE} \mathrm{OH}^{-1}$ ion. UNDERLINE them in the products as well.
It's the ACID ion that combines to the BASE ion that makes the NEUTRALIZATION. Not acid and not base anymore.

Balance these word equations by writing formulas, THEN name the products too. USE PHASE SYMBOLS!

29. Nitric acid + Potassium hydroxide \rightarrow
\qquad
30. Hydrochloric acid + calcium hydroxide \rightarrow
\qquad $+$ \qquad \rightarrow \qquad $+$ \qquad
31. Phosphoric acid plus lithium hydroxide \rightarrow
\qquad
32. Nitric Acid and Magnesium hydroxide \rightarrow
\qquad
33. \qquad $\%$ of all acids and bases follow the \qquad theory
34. \qquad \% of all acids and bases follow different theories. We will learn only about one of them, which is called the ALTERNATE theory of acids and bases, but it's named after 2 guys called \qquad \& \qquad that describes how \qquad can be a base even though it has no \qquad ions.
35. When ammonia goes into water ,this is what happens. (you must memorize this, for real)

$$
\mathrm{NH}_{3(\mathrm{G})}+\mathrm{HOH}_{(\mathrm{L})}
$$

\qquad $+$ \qquad
36. Ammonia...
water...
37. When put into water...
38. Every acid and base makes a salt and water. Practice these acid base neutralization reactions by writing the formulas from Table K \& Table L, balancing the reactions, then naming the products. Use phase symbols.

Carbonic acid + lithium hydroxide \rightarrow \qquad $+$ \qquad
\qquad $+$ \qquad \rightarrow \qquad $+$ \qquad

Acetic acid + calcium hydroxide \rightarrow \qquad $+$ \qquad
\qquad $+$ \qquad \rightarrow \qquad $+$ \qquad

Phosphoric acid + sodium hydroxide \rightarrow \qquad $+$ \qquad
\qquad

Acid Base Indicators

39. An acid/base indicator is a compound (usually a weak acid in dynamic equilibrium) that...

The molecules are ONE COLOR while the anions are a DIFFERENT COLOR.
40. Phenolphthalein works like this...
$\xrightarrow[\text { ADD ACID IONS }]{ }$
ADD BASE IONS

Adding hydroxide (base) ions is the same thing as...
41. Bromthymol Blue works like this...

ADD ACD IOAS
ADD BASE IONS
42. Write the titration math formula FIXED. Make sure you fix this on the back of the reference table too!
43. These symbols mean...
$\# \mathrm{H}^{+1}$ \qquad M_{A} \qquad V_{A} \qquad
$\# \mathrm{OH}^{-1}$ \qquad M_{B} \qquad V_{B} \qquad
44. If 7.91 mL of $1.25 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{AQ})}$ is neutralized by 16.2 mL of NaOH , what's the molarity of this base?

On paper this is clear. In the titration lab we use long tubes called burets to measure the amounts of acid and base we use. They measure from zero mL on top, down to 50.0 mL at the bottom. They measure how much we start with, and how much we end with. It's the DIFFERENCE between those measures that is how much we use. We measure the difference at the end of titration, which we will learn happens with a color change from an indicator. Draw ONE buret, label start and end volumes.
45. If 25.8 mL of HCl of 2.75 Molarity will neutralize 43.8 mL of calcium hydroxide, what is the molarity of this base? (write the formula or else)
46. It takes 12.4 mL of 1.90 M HCl to neutralize 104 mL of NaOH . What is the molarity of the base?

To measure the strength of acids and bases we use a special scale called pH .
47. We will use the...
48. It's an odd scale....
49. A pH of 7 is...
50. Label this diagram

A pH of 7 means...
51. The pH scale is a \qquad scale, which refers to the exponents.
52. Each whole number change in pH is a \qquad change in hydrogen ion strength. An acid of pH 3.5 is
\qquad stronger than an acid of pH 4.5

ex	pH of solution A	pH of solution B	comparison
ex	2.5	5.5	$10 \times 10 \times 10$ or A is 1000X more acidic than B
53	7.9	9.9	10×10 or solution A is 100X less basic than B
54	1.0	6.0	
55	13.1	7.1	
56	1.2	5.2	

57. The math formula that explains the pH scale is this: $\mathrm{pH}=$
58. Which means...

In math...
59. Whatever...

Table M - Acid Base Indicators. Methyl Orange (mark your pH scale, 0,7 , and 14 , as well as $3.1+4.4$)

60. Clearly the table says that methyl orange....
61. Acid Base indicators...
62. If 782.2 mL of KOH base to neutralize 1500 mL of sulfuric acid that has a 1.56 M , what is the molarity of this base?
63. What volume of $3.75 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{AQ})}$ is necessary to exactly neutralize 34.7 litersof 1.88 M KOH ?
64. 12.45 mL of $2.00 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ is neutralized with $25.33 \mathrm{~mL} \mathrm{Be}(\mathrm{OH})_{2}$. What is the molarity of the base?
65. Acid Base indicators are mostly \qquad .
66. When you put these indicators into solutions containing H^{+1} ions or OH^{-1} ions, they will undergo a
\qquad , shifting forward or reverse.

The formula for phenolphthalein is: $\quad \mathrm{HC}_{20} \mathrm{H}_{13} \mathrm{O}_{4}$ Show the dissociation of phenolphthalein when it is put into $\mathrm{H}_{2} \mathrm{O}$ and forms a dynamic equilibrium. Show the stresses of adding acid ions, and of adding base ions.
\qquad

67. This is the WORST PART of chemistry of the whole year for me. I can't stand this, you have to know it, it is silly, and it's on the regents. Ouch! Another way to describe an acid is this:
68. The acid...
69. Hydronium ion:
70. FOUR WAYS to describe an acid are...
71. Balance these chemical equations from these word equations...
(words) Hydrochloric acid + calcium hydroxide \rightarrow \qquad $+$ \qquad (balanced) $+\ldots+$
(words) Sulfuric acid + ammonium hydroxide yields \rightarrow \qquad $+$ \qquad (balanced) \qquad $+$ \rightarrow \qquad $+$ \qquad
(words) Nitrous acid + lithium hydroxide yields \rightarrow \qquad $+$ \qquad
(balanced) \qquad $+$ \qquad \rightarrow \qquad $+$ \qquad
72. The dissociation (or ionization) of sulfurous acid in water is written this way...
73. The dissociation of potassium hydroxide in water is written this way...
74. How many milliliters of 1.25 M NaOH base can 12.0 mL of 2.50 M HCl acid neutralize?
75. How many mL of $\mathrm{H}_{3} \mathrm{PO}_{4}$ acid of 1.15 M is needed to exactly neutralize 56.0 mL of $2.50 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$?
76. How many mL of 0.760 M NaOH is required to neutralize 145 mL of 4.33 M HCl acid?
77. Show the dynamic equilibrium of the acid base indicator Bromthymol blue, stress it by adding acid ions and by adding base ions, showing the LeChatelier shifts.
78. Show the set ups for these 3 problems... Don't do the math, just formula, put numbers in the right place You neutralize 134 mL of $2.45 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{AQ})}$ with 202 mL of $\mathrm{KOH}_{(\mathrm{AQ})}$. What is the molarity of the base?

A bottle of $2,012 \mathrm{~mL}$ of $4.00 \mathrm{M} \mathrm{NaOH}_{(\mathrm{AQ})}$ is spilled in lab. You use a weak hydrochloric acid of just 0.450 M to clean up. How many mL are used?

When $45.6 \mathrm{~mL} \mathrm{HNO}_{3(\mathrm{AQ})}$ is neutralized with $33.2 \mathrm{~mL} \mathrm{Ca}(\mathrm{OH})_{2}$ solution of 1.24 M . What is strength of the acid?
79. Draw this diagram. It's a "cartoon" but it explains the relationship between acid and base strength and the relative amounts of H^{+1} ions and OH^{-1} ions.

At pH 2.5 the hydrogen ion concentration is $1 \times 10^{-2.5}$ moles H^{+1} ions per liter of solution. Make sure, right now, you see where the exponent goes when describing the pH .

80: $1 \times 10^{-6.5}$ moles H^{+1} ions per liter of solution. pH is \qquad
$81: 1 \times 10^{-11.3}$ moles H^{+1} ions per liter of solution, pH is \qquad

To compare the solutions on the left, to the solutions on the right, compare their pH values.

	Solution 1	Solution 2	Solution 1 is...
ex	$\mathrm{pH} \mathrm{4.3}$	$\mathrm{pH} \mathrm{6.3}$	
82	$\mathrm{pH} \mathrm{11.2}$	$\mathrm{pH} \mathrm{13.2}$	
83	$\mathrm{pH} \mathrm{1.2}$	$\mathrm{pH} \mathrm{0.2}$	
84	pH 12.0	pH 8.0	
85	$\mathrm{pH} \mathrm{1.3}$	pH 6.3	

86. Acid Base Indicators change colors in solution. What colors would these turn? (look at table M!)

Methyl orange indicator into an ammonia solution. \qquad
Bromthymol blue indicator into vinegar. \qquad
Thymol blue into your deionized water. \qquad
Litmus into your potassium hydroxide. \qquad
Bromcresol green into Mr. Arbuiso's Mixed Berry seltzer.
87. One last time, prove you know why ammonia is a base according to the alternate theory.

Thymol Blue is an acid base indicator, it's a weak acid. It's formula is: $\mathrm{HC}_{27} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{~S}$
88. Show the dissociation of this weak acid in water, then stress it with adding acid and then adding base. What is the color of the molecule, what color is the anion?

Methyl Orange is an acid base indicator, it's a weak acid. It's formula is: $\mathrm{HC}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaO}_{3} \mathrm{~S}$
89. Show the dissociation of this weak acid in water, then stress it with adding acid and then adding base. What is the color of the molecule, what color is the anion?
90. List the four ways to chemically describe acids (with symbols and/or words).
91. This is hard. How many hydrogen ions are present per liter in a solution with a pH of 3.0 ?
92. Show the dissociation of a strong acid HCl and a weak acid ethanoic acid in dynamic equilibrium.

HCl

