Acid Base Chemistry Notes

1	is the Father of the Arrhenius Theory of Acids and Bases, a Nobel Prize Winner and a Swedish Chemist Extraordinaire
2. <i>A</i>	CIDS are aqueous solutions containing
3. I	ASES are aqueous solutions containing
4. <i>A</i>	ll the acids we need to know are listed in
	Acetic acid (last on the list) is also called at home.
5. <i>A</i>	cids are strong because they well
For	example: when HCl goes into water practically all of it turns into + Hardly any HCl _(AQ) remains
6. 7	he more ions in solution, the the acid

7. Further down, especially acetic acid (vinegar) the acids do NOT ______ well.

8. Further down, especially acetic acid (vinegar) these acids _____

	Acid goes into water	Dissociates this way*
9 ~100%	$HCl_{(G)} \xrightarrow{\text{water}}$	
10 ~100%	$HNO_{2(G)} \stackrel{\text{water}}{\longleftarrow}$	
11 ~45%	$H_2SO_{4(G)} \xleftarrow{\text{water}}$	
12 ~10%	$H_3PO_{4(G)} \stackrel{\text{water}}{\longleftarrow}$	
14 ~5%	$HC_2H_3O_{2(S)}$ water	<u>-</u>

BASES 15. All of the bases we need to know about are listed in ______ ALL ionic compounds that are aqueous and contain hydroxides are bases. Examples include: 16. One base is "special" because it does not have ______ ions in solution. It is _____ 17. Bases have more _____ than ions in solution. 18. The more _____ the ____ the base. The stronger bases will into + readily. 19, does not follow the Arrhenius theory for bases. It is a base. 20. Strong acids and strong bases have ______ in solution. Strong acids and strong bases are ______ because they have so many ions in solution. because they contain loose in solution. The more 21. All acids and bases are ions in solution, the better they will conduct electricity. 22. Their relative electrolytic strength is easy, their strength is listed on Table K and L ______ to _____ Arrhenius theory states that aqueous solutions with excess hydrogen ions are acids, and that aqueous solutions with excess hydroxide ions are bases. It goes on to say... 23. 24. Salts are 25. This type of reaction is called:

which will make balancing these reactions much easier.

26. The formula for water is

27. It can also be written this way

	+		-	+	
			on. UNDERLINE then the NEUTRALIZATION		
Balance these word eq	uations by writin	ng formulas, THEN na	ame the products too.	USE PHASE SYMBO	LS!
29. Nitric acid + Po	otassium hydro	xide →			
	+		+		
30. Hydrochloric ac	id + calcium hy	ydroxide →			
	+		+		
31. Phosphoric acid	plus lithium hy	ydroxide →			
	+		+		
32. Nitric Acid and	Magnesium hy	vdroxide →			
	+	→	+		

34 % of all acids and bases follow different theories. We will learn only about one of them, which	h is called
the ALTERNATE theory of acids and bases, but it's named after 2 guys called &	
that describes how can be a base even though it has no	_ions.
35. When ammonia goes into water ,this is what happens. (you must memorize this, for real)	
$NH_{3(G)} + HOH_{(L)} \leftarrow \longrightarrow $	-
36. Ammonia	
water	
37. When put into water	
38. Every acid and base makes a salt and water. Practice these acid base neutralization reactions by	
the formulas from Table K & Table L, balancing the reactions, then naming the products. Use phase	; symbols
Carbonic acid + lithium hydroxide → +	
+ + +	
Acetic acid + calcium hydroxide → +	_
+ + +	
Phosphoric acid + sodium hydroxide → +	
+ + + +	

Acid Base Indicators

39. An acid/base indicator is a	a compound (usually a weak acid in dy	namic equilibrium) that
The molecules are ONE C	COLOR while the anions are a DIFFER	ENT COLOR.
40. Phenolphthalein works li	ke this	
		
	ADD ACID IONS	
	ADD BASE IONS	
Adding hydroxide (base) ions	s is the same thing as	
Adding hydroxide (base) lons	s is the same tiling as	
41. Bromthymol Blue works	like this	
		
	ADD ACID IONS	
	ADD BASE IONS	
	ormula FIXED. Make sure you fix this	
43. These symbols mean		
$\mathrm{#H}^{+1}$	M _A	V _A
#OH ⁻¹	M _B	$_{}$ $_{V_B}$

44. If 7.91 mL of 1.25 M $H_2CO_{3(AQ)}$ is neutralized by 16.2 mL of NaOH, what's the molarity of this base?
On paper this is clear. In the titration lab we use long tubes called burets to measure the amounts of acid and base we use. They measure from zero mL on top, down to 50.0 mL at the bottom. They measure how much we start with, and how much we end with. It's the DIFFERENCE between those measures that is how much we use. We measure the difference at the end of titration, which we will learn happens with a color change from an indicator. Draw ONE buret, label start and end volumes.
45. If 25.8 mL of HCl of 2.75 Molarity will neutralize 43.8 mL of calcium hydroxide, what is the molarity of this base? (write the formula or else)
46. It takes 12.4 mL of 1.90 M HCl to neutralize 104 mL of NaOH. What is the molarity of the base?
To measure the strength of acids and bases we use a special scale called pH.
47. We will use the

- 48. It's an odd scale....
- 49. A pH of 7 is...
- 50. Label this diagram

0	1	2	3	4	5	5 6	3	7	8	9	10	11	12 ′	13 ′	14
															nH
															Pii

A pH of 7 means...

- 51. The pH scale is a _____ scale, which refers to the exponents.
- 52. Each whole number change in pH is a _____ change in hydrogen ion strength. An acid of pH 3.5 is _____ stronger than an acid of pH 4.5

ex	pH of solution A	pH of solution B	comparison
ex	2.5	5.5	10x10x10 or A is 1000X more acidic than B
53	7.9	9.9	10x10 or solution A is 100X less basic than B
54	1.0	6.0	
55	13.1	7.1	
56	1.2	5.2	

57. The math formula that explains the pH scale is this: $pH =$
58. Which means
In math
59. Whatever
Table M - Acid Base Indicators. Methyl Orange (mark your pH scale, 0, 7, and 14, as well as 3.1 + 4.4)
60. Clearly the table says that methyl orange
61. Acid Base indicators
62. If 782.2 mL of KOH base to neutralize 1500. mL of sulfuric acid that has a 1.56 M, what is the molarity of this base?

63.	What volume of $3.75~M~H_2SO_{4(AQ)}$ is necessary to exactly neutralize 34.7 litersof $1.88~M~KOH$?
64.	12.45 mL of 2.00 M H ₃ PO ₄ is neutralized with 25.33 mL Be(OH) ₂ . What is the molarity of the base?
65.	Acid Base indicators are mostly
66.	When you put these indicators into solutions containing H ⁺¹ ions or OH ⁻¹ ions, they will undergo a
	, shifting forward or reverse.
The into	e formula for phenolphthalein is: $HC_{20}H_{13}O_4$ Show the dissociation of phenolphthalein when it is put o H_20 and forms a dynamic equilibrium. Show the stresses of adding acid ions, and of adding base ions.
	+
67.	This is the WORST PART of chemistry of the whole year for me. I can't stand this, you have to know it, it is silly, and it's on the regents. Ouch! Another way to describe an acid is this:
68.	The acid
69.	Hydronium ion:

71. Balance these chemical equ	ations from these word	equations	
(words) Hydrochloric acid + o	ealcium hydroxide →	+	
(balanced)	+		+
(words) Sulfuric acid + ammo	nium hydroxide yields	→	+
(balanced)	_ +	>	_ +
(words) Nitrous acid + lithium	hydroxide yields \rightarrow	+	
(balanced)	_ +	_ →	+
72. The dissociation (or ionizati	on) of sulfurous acid in	water is written this way	y
73. The dissociation of potassium	n hydroxide in water is	written this way	
74. How many milliliters of 1.2	5 M NaOH base can 12	.0 mL of 2.50 M HCl ac	eid neutralize?

70. FOUR WAYS to describe an acid are...

75.	How many mL of H_3PO_4 acid of 1.15 M is needed to exactly neutralize 56.0 mL of 2.50 M Mg(OH) $_2$?
76.	How many mL of 0.760 M NaOH is required to neutralize 145 mL of 4.33 M HCl acid?
77.	Show the dynamic equilibrium of the acid base indicator Bromthymol blue, stress it by adding acid ions and by adding base ions, showing the LeChatelier shifts.
78.	Show the set ups for these 3 problems Don't do the math, just formula, put numbers in the right place You neutralize 134 mL of 2.45 M H ₃ PO _{4(AQ)} with 202 mL of KOH _(AQ) . What is the molarity of the base?
	A bottle of 2,012 mL of 4.00 M NaOH $_{\rm (AQ)}$ is spilled in lab. You use a weak hydrochloric acid of just 0.450 M to clean up. How many mL are used?
	When 45.6 mL $HNO_{3(AQ)}$ is neutralized with 33.2 mL $Ca(OH)_2$ solution of 1.24 M. What is strength of the acid?
79.	Draw this diagram. It's a "cartoon" but it explains the relationship between acid and base strength and the relative amounts of H ⁺¹ ions and OH ⁻¹ ions.

	.5 the hydrogen ion cousee where the expor		0 ^{-2.5} moles H ⁺¹ ions per liter of solution. Make sure, right ibing the pH.
80: 1 x	10 ^{-6.5} moles H ⁺¹ ions	per liter of solution.	pH is
81: 1x 1	0 ^{-11.3} moles H ⁺¹ ions p	per liter of solution, p	oH is
То сотј	pare the solutions on t	the left, to the solution	ons on the right, compare their pH values.
	Solution 1	Solution 2	Solution 1 is
ex	pH 4.3	pH 6.3	100x more acidic
82	pH 11.2	pH 13.2	
83	pH 1.2	pH 0.2	
84	pH 12.0	pH 8.0	
85	pH 1.3	pH 6.3	
M B Ti	Tethyl orange indicatoromthymol blue indicatorymol blue into your sitmus into your potass	r into an ammonia so ator into vinegar deionized water sium hydroxide	h. What colors would these turn? (look at table M!) olution. d Berry seltzer.
87. One	e last time, prove you	know why ammonia	is a base according to the alternate theory.

Thymol Blue is an acid base indicator, it's a weak acid. It's formula is: HC ₂₇ H ₂₉ O ₅ S			
88. Show the dissociation of this weak acid in water, then stress it with adding acid and then adding base. What is the color of the molecule, what color is the anion?			
			
Methyl Orange is an acid base indicator, it's a weak acid. It's formula is: HC ₁₄ H ₁₃ N ₃ NaO ₃ S			
89. Show the dissociation of this weak acid in water, then stress it with adding acid and then adding base. What is the color of the molecule, what color is the anion?			
			
90. List the four ways to chemically describe acids (with symbols and/or words).			
91. This is hard. How many hydrogen ions are present per liter in a solution with a pH of 3.0?			
92. Show the dissociation of a strong acid HCl and a weak acid ethanoic acid in dynamic equilibrium.			

HC1

 $HC_2H_3O_2$